Turbo-Machinery Considerations Using Super-Critical Carbon Dioxide Working Fluid for a Closed Brayton Cycle

Bob Fuller, Project Engineer

Barber-Nichols Inc. 6325 W. 55th Ave Arvada, Colorado 80433 303-421-8111 bfuller@barber-nichols.com

Machinery Discussion

- Large Scale ~300 Mwe Rotating Equipment Design
 - Compressors
 - Turbine
 - Seal Options
 - Bearing Options
 - Generator Option
- Small Scale ~ 280 kWe System Design
 - Compressors
 - Turbine
 - Seal Options
 - Bearing Options
 - Generator Option

Cycle Design Is the Input to the Turbomachinery Design

MIT Cycle (V. Dostal, M.J. Driscoll, P. Hejzlar, and N.E. Todreas, 2002 (MIT-ANP-TR-090)

Ground Rule: Industry Acceptance Is Important

- Make the Machinery Look Like Conventional Power Plants If Possible (Generate Industry Interest)
 - 3600 RPM (GE Makes a 3600 RPM Hydrogen Cooled Generator @ ~300 Mwe)
 - Single Shaft
 - Oil Lubricated Hydrodynamic Bearings (Tilt Pad or Elliptical)
 - Seals (Acceptable on Steam and Gas Turbines)
 - Horizontal Shaft

Ns-Ds Diagram Compressors (English Units)

From General Electric Site BCL Series Compressor

Main Compressor (Large System) 3-Stage Radial Efficiency is 87%

MAIN CO THREE 3600 RP		ERFORMA RADIAL Stage eff	NCE 0.87	Wdot 2091kg/s Mt 300MW cycle *Stage enthalpies need to be corrected but are OK for concept study					
Temperatu (°C)	ure Pressure (MPa)	Density (kg/m³)	Enthalpy (kJ/kg)	Entropy (kJ/kg-K)	Op (kJ/kg-K)	Stage Ns	US Ns	Efficiency Overall	Stage U2 ft/s ia inches
32 41.649	7.69 10.766	598.81 647.38	306.81 311.74	1.3483 1.3483	15.813 4.7145	1.20	154		343.53 → 21.87
41.803 51.164		644.8 684.11	312.48 318.53	1.3506 1.3506	4.7558 3.1544	0.99	128		361.03 → 22.98
51.447	14.803	681.47	319.43	1.3534	3.1672	0.82	106		371.98
60.965 61.405	20.014	717.81 715.02	326.88 327.99	1.3534 1.3567	2.5125 2.5179	\backslash	*	0.07	23.68
60.286	20.014	722.1	325.18	1.3483	2.5041		*	0.87	
							\checkmark		
3-Stage Radial (Mixed Flow) Compressor 3-Stage Meets Target Efficiency Overall Efficiency									

Large Density Variation for Main Compressor Makes for a Difficult Design

Need to Keep Compressor Inlet Density In Small Range for Successful Operation

Main Compressor Radial Type

- Close to the Dome During Startup/Shutdown/System Upset/Wet Gas Handling
- Radial Head/Flow Characteristics for Startup/Shutdown Flow/Pressure Transients
- Flat Head v Flow Characteristic Allows Maintenance of Head over a Wider Flow Range
- Reduced Number of Stage for Overhung Configuration (Rotordynamic Consideration)
- Shrouded Design for Best Efficiency

Re-Compressor Axial Type

	Axial Re- Compressor 7-Stage						
	Stage						
	1	2	3	4	5	6	7
Pressure Ratio	1.226	1.2033	1.18	1.146	1.1126	1.0914	1.0711
P in psia	1116	1369	1647	1945	2228	2480	206
P out psia	1369	1647	1945	2228	2480	2706	2899
Specific Speed	144	138	134	141	157	171	194
D tip (inches)	42	40.7	39.5	38.3	37.1	35.8	34.6
D hub (inches)	39.1	37.8	36.7	35.5	34.4	33.2	32
Hub/Tip Ratio	0.930952	0.928747	0.929114	0.926893	0.927224	0.927374	0.924855

Hub/Tip Ratio is Above .9 (Needs Further Review)

Analysis Was Done For Multi-Stage Radial Compressors

Re-Compressor as Radial 84%

Difficult to Obtain High Efficiency

Three Stage	3070.5lb/sec									
Temperature	Pressure	Density	Enthalpy	Entropy	Ср		\backslash			
(°F)	(psia)	(lbm/ft ³)	(Btu/lbm)	(Btu/lbm-°R)	(Btu/lbm-°R)					
157.26	1116.5	10.281	205.95	0.45305	0.38367	298.6577	6690.8 🔪	84.09706	453.73	
220.03	1675	13.848	214.55	0.45305	0.38935			\backslash	28.89	▼
223.98	1675	13.631	216.07	0.45528	0.3827	225.2586	5679.4	82.58789	396.58	
273.68	2275	16.834	223.37	0.45528	0.38298			\backslash	25.25	_ \
277.07	2275	16.641	224.66	0.45704	0.3789	184.5142	4986.98	82.40286	345.04	
317.58	2900	19.46	231.07	0.45704	0.37647			\backslash	21.97	
320.58	2900	19.289	232.2	0.45849	0.37382	159.184		×	0.84	\sim V
309.46	2900	19.941	227.99	0.45305	0.38413					\mathbf{N}
										/λ

Large System

Wheel

Inches

Diameter /

Ns-Ds Diagram Turbines (English Units)

Turbine Design (3-Stage Axial) 90% Efficiency

	Axial Reaction Turbine Summary						
3-stage							
	Stage 1	Stage 2	Stage 3				
Turb In Temp F	1022	955	888				
Nozz In Temp F	972	905	839				
Rotor Out Temp F	951	883	819				
Turb Out Temp F	955	888	823				
Mass Flow lb/sec	7683	7683	7683				
Adiab. Head B/#	19.735	19.735	18.59				
Hub Dia 1 Inch	28.59	36.43	32.14				
Hub Dia 2 Inch	32.23	38.64	35.2				
Tip Diameter Inch	45.687	47.58	48.9				
Reaction	0.4	0.4	0.4				
Blade Chord Inch	2	2	2				
# Blades	85	85	85				
Specific Speed	93	105	125				

Turbine (Single Stage Radial) 90% Efficiency ~1.9 meter Diameter

300 Mwe Super-Critical CO2 Closed Brayton Cycle Rotating Group

Large Scale System Oil Lubricated Hydrodynamic Bearings

-Thrust and Journal Hydrodynamic Bearings (Industry Standard for Power Generation Equipment, Waukesha)

Liftoff Gas Seal (John Crane) Surface Speeds/Pressures/Temperatures/CO2 Currently Offered

(From GE Site)

Small Scale System ~300 kWe

- Study SCO2 Closed Brayton Cycle on Small/Affordable Scale
- Same Pressures and Much Lower Flow Rate
 - Higher Speed Machinery to Gain Efficiency
 - Radial Compressors and Turbine
 - High Speed PM Motor/Generator
 - Bearings/Seals for Large System Not Optimum for Small System

Small Scale Loop (Mass Flow 5 kg/s)

Station	Station T(K)		P (Mpa)	mdot (kg/s) eff	•	dP/P	kJ/kg	
	1	305	7.69	3	72	0.01	304.6	
	2	335.2	20	3			329.8	
	3	485	19.9	2	68	0.005	614.3	
	4	668	19.8	5		0.005	843.9	
	5	825	19.7	5		0.005	1037.6	
	6	722	7.93	5	85		924.39	
	7	504.7	7.85	5		0.01	675.89	
	8	375	7.77	3		0.01	524.07	

Cycle Analysis with Pressure Drops ~279 kWe Net Electric Power

Barber Nichols

Oil Lubricated Bearings with Seals to Use "Large Machine" Technology

Scaled Loop Machinery (2 bearing option)

Oil Lubricated Bearings with Seals to Use "Large Machine" Technology

Scaled Loop Machinery (4 bearing option, more seals)

Oil Lubricated Bearings with Seals to Use "Large Machine" Technology

Scaled Loop Machinery (2 Shaft Option)

Simplified Design

- CO2 Bearing Supply
 - Hydrostatic
 - Hydrodynamic
 - Flex Pad
 - Foil
- Generator Operating in CO2
 - Eliminate Gas Liftoff Seals/Laby Seals OK
 - Supercritical CO2 Degradation of Insulation
 - Windage Loss

Generator Technology Very High Power/Speed Compact for Rotordynamics

Permanent Magnet Generator -45 MGOe NIB Magnet -Arnon 5 Laminations -7" Stack Length -5" Outer Diameter -Inconel 718 Rotor Can -279 kWe Output at 80,000 rpm -98% Efficiency

-Windage in CO2 at 170 deg F -62 kW @ 1100 psi -11 kW @ 250 psi -1 kW @ 14.7 psi Need to Operate Generator at Low Pressure

Main Compressor Analysis

Looks More Like a Pump Than a Compressor

•Developed Defined Procedure

•Use Real Gas Mean Line Code

Modify for Ideal Gas

•Flow Path Analysis

•Sizing

•Input to CFD Code with Average CO2 Properties

Other Considerations To Be Considered When Designing Turbomachinery

- Rotordynamics
- Thrust Load Management
- Startup/Shutdown Transients
- Clearances
- Inlet/Discharge Diffusion etc.
- Stresses (Including Thermal/Fatigue/Operating etc)

