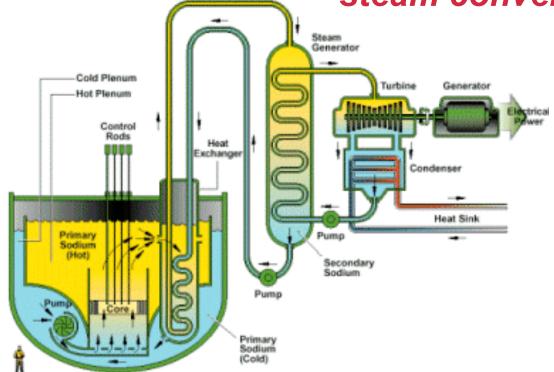

### AREVA evaluation of SCO2 cycle for Sodium Fast Reactor

Célia Fouillet


AREVA NP

MIT, March 6th, 2007

**AREVA NP** 

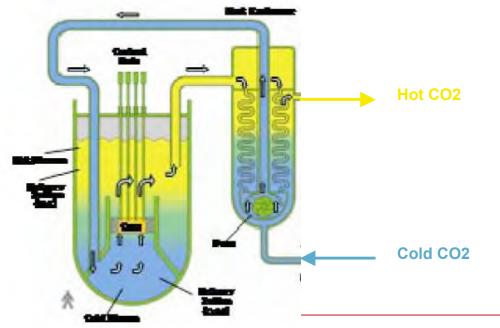


## SFR possible design with a « classical » water steam conversion cycle



- Rankine water steam conversion cycle
- Risk for sodium water reaction in case of leak on the steam generator
  - Rapid and exothermic reaction
  - → Safety issues for the core, necessity of an intermediate sodium loop between water and primary sodium
- Plant efficiency: 40.8 % (EFR project)
  - Temperatures: 545°C for sodium at core outlet and 490°C for steam at turbine inlet
  - Turbine efficiency (dry steam): 89 %

AREVA

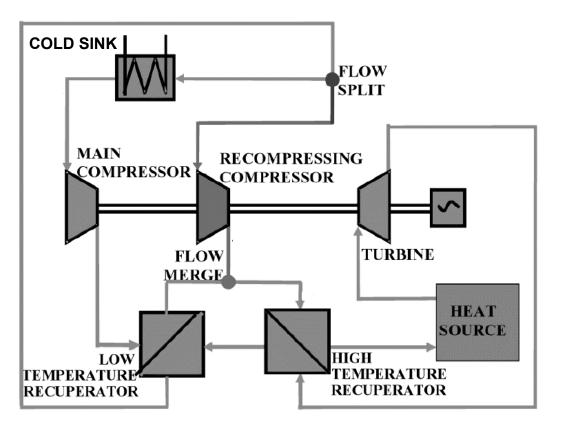



## Possible design with SCO2 cycle

- No risk for water sodium reaction
- ⇒ If the SCO2 option allowed removing the intermediate sodium loop → Major simplification of plant design

High gas pressure in contact with the primary sodium loop

- Risk for leaks on Na / CO2 exchanger → Risk for gas passage in the core
- Core sodium void effect: in case of gas flow in the core, large reactivity insertion → the prompt criticality can be reached (= nuclear power excursion)
- ◆ ⇒ Major safety issue
- Na / CO2 exchanger has to be out of the core vessel
- In addition, preventive and mitigative measures have to be taken
  - Detection (exchanger leak, gas flow in primary sodium), robust exchanger design, sodium loop design (gas / sodium separator) ...




**AREVA NP** 



## SCO2 power conversion cycle

 SCO2 cycle design: Heat regeneration and gas flow split (from MIT studies)



#### Plant efficiency

- SCO2 pressures: 74 210 bar
- SCO2 temperatures: 32 510°C
- Efficiencies: turbine 93%, compressor 89%
- $\Rightarrow$  Plant efficiency: 43.4 %
  - To be compared to 40.8 % with a classical Rankine cycle

### **A** AREVA

## Main advantages associated with SCO2 cycle

#### No risk for water / sodium reaction

No intermediate loop in sodium → major simplification of the plant design

#### Efficiency increase

- + 2.5 % compared to a Rankine cycle for a sodium hot temperature of 545°C
- Potentially higher for higher sodium temperatures (but limitations due to available materials)

# Main drawbacks associated with SCO2 cycle

**\triangleright** Risk for gas flow in the core  $\rightarrow$  Major safety issue

- Requires preventive and mitigative measures, still to be developed
  - Detection devices
  - Gas / sodium separators ...

### Size of heat exchangers (case of a 1500 MWe SFR)

- Na / CO2 exchangers (tubular exchangers)
  - 3600 MWth on exchangers: 17 modules of 7.5 m height and 2.4 m diameter
  - For classical cycle (Na/Na exchanger): 6 modules with the same dimensions
- CO2 / CO2 recuperators (plate exchangers, Heatric type)
  - High temperature recuperator (4530 MWth): 14 modules 0.65 \* 5.0 \* 2.5 m<sup>3</sup>
  - Low temperature recuperator (2540 MWth): 9 modules 1.5 \* 3.0 \* 1.6 m<sup>3</sup>

AREVA NP

# Main uncertainties associated with SCO2 cycle

- Compatibility with sodium
  - CO2 reacts with sodium, exothermic reaction
  - However, the reaction kinetics seem to be slower than that of the reaction with water
  - A work program is planed by CEA to investigate the characteristics of the reaction
    - Kinetics, wastage effect on the exchanger tubes ...
- Industrial development of the SCO2 technology
  - R&D needs for the turbomachinery design
    - A special design is required for large power energy conversion system
    - The design of the compressor has to deal with the CO2 properties variations
  - SCO2 technology seems to be incompatible with a short or medium term industrial development

AREV

### **A** areva

AREVA NP

## Main uncertainties associated with SCO2 cycle

### Cold sink

- Low CO2 temperature in the cycle: 32°C
- Corresponding cold sink temperature: around 27°C max

⇒ Which impact of a higher temperature on plant operation ?
Decrease of plant efficiency …

#### Load following

- Preliminary study of partial load conditions
- Differents means to reduce the electric power
  - By-pass of Na / CO2 exchanger
  - By-pass of Na / CO2 exchanger + turbine
  - Decrease of CO2 mass inventory in the conversion cycle → decrease of the pressure
- Solution 3 seems to bring the higher efficiency:
  - 35 % efficiency for 50 % P<sub>N</sub>
  - To be compared to 39 % for 50 % P<sub>N</sub> with a Rankine cycle
- ⇒ Significant decrease of plant efficiency for partial load conditions The strategy of plant control for load following should be further optimized



## **Conclusions on SCO2 cycle for SFR**

- Needs for developments for non nuclear technology
  - Turbomachinery (compressor and turbine)
  - Technology for high power levels is required
  - Heat Recuperator technology
  - Cold sink temperature
- Application of SCO2 cycle to nuclear technology requires additional developments
  - It is necessary to manage a gas leak into primary sodium
  - The reactivity with sodium has to be assessed
  - Sodium / gas exchanger technology
  - Load variations
  - ...

But potential interest

- Efficiency increase
- Simplification of plant design (if no intermediate loop)
- Compact turbomachinery
- ...

AREVA NP viewpoint The industrial application of SCO2 cycle to nuclear plants appears as a long term, potentially attractive, perspective