

DOE Generation IV Energy Conversion

Supercritical CO2 Cycle Development

Paul Pickard (SNL) Technical Director – Gen IV Energy Conversion

> MIT S-CO2 Symposia March 6, 2007

> > 1

Generation IV Energy Conversion

- Electrical generation Gen IV Energy Conversion Program
- Hydrogen production Nuclear Hydrogen Initiative (NHI)

Gen IV Energy Conversion Objectives: Optimize GEN performance and cost effectiveness of Gen IV reactors

Nuclear Energy Systems

FY07 Gen IV Power Conversion

S-CO2 - intermediate temperature reactors (500-700 C)

- High efficiencies in intermediate temperature ranges
- Relatively compact, little additional complexity
- Potential for reduced capital costs
- Key issues compression near critical point, control strategy for split flow

FY07 Task Areas

- 1. S-CO2 system design (MIT)
- 2. S-CO2 control analysis (ANL, MIT)
- 3. PCHE heat transfer experiments (ANL)
- 4. S-CO2 materials testing (MIT, LANL)
- 5. Initiate construction of small scale S-CO2 compression exps and (~ MW) class split flow Brayton cycle system (SNL, Industry)

Nuclear Energy Systems

Supercritical CO2 Cycle Activities Power Conversion System Studies (MIT)

- FY06 studies developed layouts for PCS ratings ranging from 20 to 1200MWe
- "3rd generation" concepts evolved from earlier MIT studies, addressed impact of ductwork pressure drop on thermodynamic efficiency;
- Radial compressors used for main compressor (1 stage ~0.85) and recompressor (3 stages ~0.89)
- Modular approach to extend power range
- Reference version 300MWe two-train recuperator configuration using parallel clusters of commercial HEATRICTM PCHE
- FY07 activities at MIT focus on control simulations

S-CO2 Controls – Model Development, Simulation (ANL, MIT)

- S-CO2 control strategy Options
- Earlier tasks refined analysis tools at MIT and ANL
- GASS-PASS/CO2 (MIT, ANL) fast running, adaptable code now operational – including radial compressor models
- ANL Plant Dynamics Code incorporated radial compressor models – simulated control options for LFR/S-CO2
- FY07 studies use updated models to simulate range of control strategies for S-CO2 cycle

Nuclear Energy Systems

3 – Turbine bypass valve

4 – Inventory control tanks and valves

5 – Flow split valve

Closed Brayton Cycle Testing

CBC operational data for model comparisons

•Transient, steady state operations

•Working fluids -- N2, He, Ar, CO2, mixtures

• Operational data for --Inventory, temperature changes, startup, shutdown, power changes

SNL CBC Testing For Gen IV			Pure Gases			Gas Mixtures			
	Test Date	1/11/2006 10/17/2006	3/16/2006	5/25/2006		1/11/2006	3/16/2005	3/16/2005	3/23/2006
Gas Type	Description	N2	Ar	CO2	He	90N2-10Ar	90Ar-10He	80Ar-20He	70N2-30He
	Cp J/kg*K	1026	→ 518	844	5378	941.4	571	634	1221
	k(300K) mW/m*K	26	18	16	154	26	24	33.1	46
	k(1000K) mW/m*K	60	42	54	336	59	56	72	105
	Ro (J/kg*K)	297	208	188.9	2079	284	229	254	399
	MW (gm/mole)	28	39.9	44.01	4	29	36.4	32.7	21
	Gamma	1.407	→ 1.66	1.316	1.66	1.433	1.66	1.66	1.486
SS	Inventory Test	X	X		Mix				X
SS	Temperature Increase	х	X	Х	Mix				Х
SS	Flow and RPM Op-Curves	X		X	Mix	X		X	X
SS	Operating Pwr Curve	x		X	Mix	X		X	X
SS	Operating Pressure Ratio	X		Х	Mix	X		Х	X
Transient	RPM Step Decrease (5000 rpm)	X			Mix	X		X	X
Transient	RPM Step Increase (1000 rpm)	x	X	X	Mix		X	X	X
Transient	Startup	X	X	X	Mix				X
Transient	Shutdown	x		X	Mix	X			x
SS	MW Increase	X							
SS	MW Decrease		X				X		

Comparison of Measurements and Predictions Nuclear Energy Systems

S-CO2 PCHE Heat Transfer Testing Facility -- ANL

- Initial configuration CO₂-to-water heat exchange tests
- 17.5 KW heat duty PCHE represents section of cooler for S-CO₂ Brayton cycle
- FY07 upgrade to CO₂ to CO₂ configuration (started in FY06). (low temperature recuperator).
 - Conducted initial series of CO2-towater steady state under prototypical conditions.
 - Determined average heat transfer coefficients on the water and CO2 sides. Compared ANL PCHE modeling with test data
 - Good agreement is obtained for the heat exchange rate, Q, or CO2 and H2O outlet temperatures. CO2 side pressure drop is overpredicted

Small Scale S-CO2 Cycle Demonstration Loop

- Next stage of S-CO₂ development construct small scale S-CO₂ power conversion system to demonstrate key technology issues
- Phased approach key technical issues first -- and budget constraints
- First stage experiments to address compression near critical point
- Progress to split flow recuperated
 Brayton cycle demo
- Contracts (FY06) solicited TM Industry input on small scale test loop to test key technical features (BNI, P&W-Rocketdyne)

Primary FY06 SOW Tasks

- Review key technical issues for full scale system
- Examine approach for S-CO2 compression tests
- Phased approach to develop full cycle, preliminary cost and schedule

Key Technology for S-CO₂ Development SNL LDRD -- S-CO₂ other working fluids

Major Technology Issues

Gas Liftoff Seals Efficiency of Compression Thermal Input Control Bearings and Thrust Loads Off-Normal behavior (wet) Turbo Assisted Motor/ Compressor Reduces motor power requirements Allow modification – wheels, housings could be replaced with different designs.

Gen IV Energy Conversion FY07 S-CO2 Summary

Develop experimental capability to address key technical issues

- Main compressor operation,
- System control strategies
- Heat transfer experiments

Approach: phased design, construction

- Address main compressor exps first
- Split flow compression as first stage of small scale system
- Optimize construction sequence to provide early results and leverage previous phase

Planning Schedule for Gen IV scope

- Gen IV funding ~ 4 year schedule
- Other SC fluids work on supercritical compression studies
- GNEP other program involvement

Gen IV Energy Conversion S-CO2 cycle phases, proposed schedule

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Dev Phase	Adv C	ycle Ev	val.	Key T	Key Technology Exps Pilot Scale Demo					
						Sus	tainable	9		
S-CO2 Cycle						Syst	tem Sele	ection		
Development	S-CO2	Design /	Eval			• • •				
Components			Main PCHE	Comp, E Exps]					
				MW S	-CO2 split	flow de	vel.			
Small Scale			Solit flow	, 🔺			up Brayto	on		
		(comp exp	os d	Non- recu	D				
Pilot Scale				_	Brayton					
				Pilot dem	O2 system design and technology					

Extra VGs

SNL LDRD Single Shaft SC-CO₂ opt for SC-Xe Nuclear Energy Systems

Lab-Scale 120 kW_{th} Heater Power : 7 kWe SC-CO₂ : 33 kWe SC-Xe

SC-CO2 Comp. LDRD

Small Scale S-CO2 Demo Unit

Conceptual Approach

Gen IV Energy Conversion S-CO2 Interactions

- CO2 reaction with Na at higher temperatures
- Japanese observed slow reactions below ~ 550 C, increasing reaction rates above 550 C
- Korean data (CO2 bubbled into Na Column) suggest some reaction below ~ 550 C

Case No.	Na Temp. (°C)	X	Ray Diffraction	Gas Chromato- graphy ²⁾	Carbon Analysis		
		Na	Na ₂ O	Na ₂ CO ₃	CO	С	
1	200	+++	+	Not detected	0 vppm	Not detected	
2	300	+++	Not detected	Not detected	0 vppm	Not detected	
3	400	+++	Not detected	Not detected	10 vppm	Not detected	
4	550	+++	Not detected	Traces	193 vppm	0.1 mol-%	
8	600	++	Not detected	+	1359 vppm	0.2 mol-%	
9	615	+	Not detected	+++	9865 vppm	11.7 mol-%	
10	630	Traces	Not detected	++	11241 vppm	9.3 mol-%	
11	650	Not detected	Not detected	+++	10364 vppm	Not detected	

Sodium-CO2 reaction (Japanese results)

1) +++: Large amount, +: Small amount.

2) Taken sample from the exhaust gas.

• Expected interaction mode in PCHE – small cracks – form oxides or carbonates – could lead to plugging if not removed, E release not primary concern.

- Does not appear to be major issue for current Na outlet temperatures – but need to confirm
- Significantly less of a concern than water Na reaction
- ABR program constructing a small facility to investigate plugging issue (ANL)
- ABR will investigate Na CO2 interactions,
- Gen IV focus on cycle development

ANL S-CO2 Heat Transfer Loop

CO₂ / H₂O Heat Exchanger

CO₂ / CO2 Heat Exchanger Design

GFK Gen IV Energy Conversion Objectives: Optimize performance and cost effectiveness of Gen IV reactors

Nuclear Energy Systems